Learning these TS Inter 1st Year Maths 1A Formulas Chapter 9 Hyperbolic Functions will help students to solve mathematical problems quickly.
TS Inter 1st Year Maths 1A Hyperbolic Functions Formulas
→ Hyperbolic Functions:
Hyperbolic Function | Definition | Domain | Range |
1. sin hx | \(\frac{e^x-e^{-x}}{2}\) | R | R |
2. cos hx | \(\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}{2}\) | R | [1, ∞) |
3. tan hx | \(\frac{e^x-e^{-x}}{e^x+e^{-x}}\) | R | (-1, 1) |
4. cot hx | \(\frac{e^x+e^{-x}}{e^x-e^{-x}}\) | R – {0} | (-∞, -1] ∪ [1, ∞) |
5. sec hx | \(\frac{2}{e^x+e^{-x}}\) | R | [0, 1] |
6. cosec hx | \(\frac{2}{e^x-e^{-x}}\) | R – {0} | R – {0} |
→ Inverse Hyperbolic Functions:
Inverse Hyperbolic Function | Definition | Domain | Range |
1. sin h-1x | loge(x + \(\sqrt{x^2+1} \)) | R | R |
2. cos h-1x | loge(x + \(\sqrt{x^2-1} \)) | [1, ∞) | [0, ∞) |
3. tan h-1x | \(\frac{1}{2}\)loge\( \left(\frac{1+x}{1-x}\right) \) | (-1, 1) | R |
4. cot h-1x | \(\frac{1}{2}\)loge\( \left(\frac{x+1}{x-1}\right) \) | R – [-1, 1] | R – {0} |
5. sec h-1x | loge\( \left(\frac{1+\sqrt{1-x^2}}{x}\right) \) | (0, 1] | [0, ∞) |
6. cosec h-1x | loge\( \left(\frac{1 \pm \sqrt{1+x^2}}{x}\right) \) | R – {0} | R – {0} |
→ Hyperbolic Identities:
- cosh2x – slnh2x = 1
- sech2x – tanh2x = 1
- coth2x – cosech2x = 1
- sinh(2x) = 2sinhx coshx
- cosh(2x) = cosh2x + sinh2x = 1 + 2sinh2x = 2cosh2x – 1
→ sinh (- x) = – sin hx
→ cosh (- x) = cosh x
→ tanh(-x)= -tanhx
→ coth(-x) = -coth x
→ cosech(-x) = -cosech x
→ sech(-x) = sech x
→ sinh (x + y) = shih x . cosh y + cosh x sin h y
→ cosh (x + y) = cosh x. cosh y + sin h x sinb y
→ sinh(x – y) sinhx.cosh y – cosh x sinh y
→ cosh(x – y)=coshx.coshy – sinhxsinhy
→ tanh (x + y) = \(\frac{\tanh x+\tanh y}{1+\tanh x \tanh y}\)
→ tanh (x – y) = \(\frac{\tanh x-\tanh y}{1-\tanh x \tanh y}\)
→ sinh3x = 3sinhx + 4sinh3x
→ cosh3x = 4cosh3x – 3coshx
→ tanh3x = \(\frac{3 \tanh x+\tanh ^3 x}{1+3 \tanh ^2 x}\)