TS Inter 1st Year Maths 1A Hyperbolic Functions Important Questions

Students must practice these Maths 1A Important Questions TS Inter 1st Year Maths 1A Hyperbolic Functions Important Questions to help strengthen their preparations for exams.

TS Inter 1st Year Maths 1A Hyperbolic Functions Important Questions

Question 1.
Show that sin h(x + y) = sin x cos hy + cos hx sin hy. [Mar ’98]
Answer:
R.H.S = sin x cos hy + cos hx sin hy
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 1
∴ sin h(x + y) = sin hx cos hy – cos hx. sinhy

Question 2.
Show that cos h(x + y) = cos hx cos hy + sin hx sin hy. [Mar. ’98, ’92]
Answer:
R.H.S = cos hx cos hy + sin hx sin hy
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 2
∴ cos h(x + y) = cos hx cos hy + sin hx sin hy.

Question 3.
Prove that sinh 2x = \(\frac{2 \tan h x}{1-\tan h^2 x}\). [May ’00]
Answer:
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 3

Question 4.
Show that cosh 2x – 1 = 2sinh2x. [Mar. ’08]
Answer:
L.H.S = cosh 2x – 1 = \(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{2}\) – 1
= \(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 \mathrm{x}}-2}{2}=\frac{\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)^2}{2}\)
= \(2\left[\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{2}\right]^2\) = 2sinh2x = RHS

TS Inter First Year Maths 1A Hyperbolic Functions Important Questions

Question 5.
Show that sinh-1x = loge(x + \(\sqrt{x^2+1}\)) [May ’03, ’97, ’95, ’91; Mar. ’95]
Answer:
Let sinh-1x = y
sinh y = x ⇒ \(\frac{e^y-e^{-y}}{2}\) = x
⇒ ey – e-y = 2x
⇒ ey – \(\frac{1}{\mathrm{e}^{\mathrm{y}}}\) = 2x
⇒ (ey)2 – 1 = 2xey
⇒ (ey)2 – 2xey – 1 = 0

This is a quadratic equation in ey then
x = \(\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}\)
⇒ e = \(\frac{-(-2 x) \pm \sqrt{(-2 x)^2-4(1)(-1)}}{2.1}=\frac{2 x \pm \sqrt{4 x^2+4}}{2}\)
= x ± \(\sqrt{x^2+1}\)

Since ey > 0 then, ey = x + \(\sqrt{x^2+1}\)
y = loge(x + \(\sqrt{x^2+1}\)
∴ sinh-1x = loge(x + \(\sqrt{x^2+1}\))

Question 6.
Show that cosh-1x = loge(x + \(\sqrt{x^2-1}\)) [Mar. ’03; May. ’96]
Answer:
Let cosh-1x = y
cosh y = x ⇒ \(\frac{\mathrm{e}^{\mathrm{y}}+\mathrm{e}^{-\mathrm{y}}}{2}\) = x
⇒ ey + e-y = 2x
⇒ ey + \(\frac{1}{\mathrm{e}^{\mathrm{y}}}\) = 2x
⇒ (ey)2 + 1 = 2xey
⇒ (ey)2 – 2xey + 1 = 0

This is a quadratic equation in ey then
x = \(\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}\) ey
= \(\frac{-(-2 \mathrm{x}) \pm \sqrt{(-2 \mathrm{x})^2-4(1)(1)}}{2.1}=\frac{2 \mathrm{x} \pm \sqrt{4 \mathrm{x}^2-4}}{2}\)
= x ± \(\sqrt{x^2-1}\)

Since ey > 0 then ey = x + \(\sqrt{x^2-1}\)
y = loge (x + \(\sqrt{x^2-1}\))
∴ cosh-1x = loge(x + \(\sqrt{x^2-1}\))

Question 7.
Show that tanh-1x = \(\frac{1}{2}\)loge\(\left(\frac{1+x}{1-x}\right)\). [May ’97, ’93]
Answer:
Let tanh-1x = y
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 4

Question 8.
If cosh x = \(\frac{5}{2}\), find the values of (i) cosh (2x) (ii) sinh (2x). [Mar. ’19, ’17 (TS), 16′ (AP), ’11, ’10, ’01; May ’15(TS), ’11, ’06]
Answer:
Given cosh x = \(\frac{5}{2}\)
(i) cosh (2x) = 2 cosh2x – 1 = 2\(\left(\frac{5}{2}\right)^2\) – 1
= 2\(\left(\frac{25}{4}\right)\) – 1 = \(\frac{25-2}{2}=\frac{23}{2}\)
∴ cosh (2x) = \(\frac{23}{2}\)

(ii) We know that cosh2(2x) – sinh2(2x) = 1
\(\left(\frac{23}{2}\right)^2\) – sinh2(2x) = 1
⇒ \(\frac{529}{4}\) – sinh2 (2x) = 1
⇒ sinh2(2x) = \(\frac{529}{4}\) – 1
= \(\frac{525}{4}\) sinh (2x) = \(\pm \sqrt{\frac{525}{4}}=\pm \frac{5 \sqrt{21}}{2}\)

Question 9.
If cos hx = \(\frac{3}{2}\), then prove that tanh2\(\frac{x}{2}\) = tan2 \(\frac{θ}{2}\). [May ’13; Mar. ’13]
Answer:
Given cosh x = sec θ
LHS = tanh2(\(\frac{x}{2}\)) = \(\frac{\cosh x-1}{\cosh x+1}=\frac{\sec \theta-1}{\sec \theta+1}=\frac{1-\cos \theta}{1+\cos \theta}\) = tan2(\(\frac{θ}{2}\)) = RHS

Question 10.
If sinh x = \(\frac{3}{4}\), find cosh (2x) and sinh (2x) [Mar. ’14; ’12; May ’14, ’09]
Answer:
Given sinh x = \(\frac{3}{4}\)
(i) cosh (2x) = 1 + 2 sinh2x = 1 + 2\(\left(\frac{3}{4}\right)^2\)
= 1 + 2\(\left(\frac{9}{16}\right)=\frac{8+9}{8}=\frac{17}{8}\)
∴ cosh (2x) = \(\frac{17}{8}\)

(ii) We know that cosh2(2x) – sinh2(2x) = 1
\(\left(\frac{17}{8}\right)^2\) – sinh(2x) = 1 ⇒ \(\frac{289}{64}\) – sinh2(2x) = 1
sinh2(2x) = \(\frac{289}{64}-1=\frac{289-64}{64}=\frac{225}{64}\)
∴ sinh2(2x) =±\(\frac{15}{8}\)

Question 11.
If sinh x = 3, then show that x = loge(3 + \(\sqrt{10}\)) [May ’10; B.P]
Answer:
Given sin hx = 3 ⇒ x = sinh-1(3) = loge(3 + \(\sqrt{3^2+1}\)) [∵ sinh-1x = loge(x + \(\sqrt{\mathrm{x}^2+1}\))]
∴ x = loge(3 + \(\sqrt{10}\))

Question 12.
Show that tanh-1(\(\frac{1}{2}\)) = \(\frac{1}{2}\)loge 3. [Mar. ’19, ’17, ’15(AP), ’08, ’05, ’02 May ’15(AP), ’07, ’05]
Answer:
L.H.S = tanh-1(\(\frac{1}{2}\))
We know that tanh-1(x) = \(\frac{1}{2}\)loge\(\left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)\)
Put x = \(\frac{1}{2}\)
⇒ tanh-1(\(\frac{1}{2}\)) = \(\frac{1}{2}\)loge\(\left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right)\) = \(\frac{1}{2}\)loge\(\left(\frac{2+1}{2-1}\right)\)
∴ tanh-1(\(\frac{1}{2}\)) = \(\frac{1}{2}\)loge (3)

TS Inter First Year Maths 1A Hyperbolic Functions Important Questions

Question 13.
Prove that (cosh x – sinh x)n = cosh (nx) – sinh (nx). [Mar. ’15(TS); Mar. ’07, ’06]
Answer:
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 5
∴ L.H.S = R.H.S
∴ (cosh x – sinh x)n = cosh (nx) – sinh (nx).

Question 14.
Find the domain and range of the function y = tanh x. [May . ’04]
Answer:
Domain = R
Range = (-1, 1)

Question 15.
Show that f(x) = cosh x is an even function. [Mar. ’04]
Answer:
Given f(x) = cosh x = \(\frac{e^x+e^{-x}}{2}\)
Now, f(x) = \(\frac{\mathrm{e}^{-\mathrm{x}}+\mathrm{e}^{-(-\mathrm{x})}}{2}=\frac{\mathrm{e}^{-\mathrm{x}}+\mathrm{e}^{\mathrm{x}}}{2}\) = f(x)
∴ f(x) is an even function.

Some More Maths 1A Hyperbolic Functions Important Questions

Question 1.
Show that sinh (x – y) = sinh x cosh y – cosh x sinh y
Answer:
RHS = sinh x cosh y – cosh x sinh y
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 7
∴ sinh (x – y) = sinh x cosh y – cosh x sinh y

Question 2.
Show that cosh(x – y) = cosh x cosh y – sinh x sinh y
Answer:
RHS = cosh x cosh y – sinh x sinh y = \(\left[\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}{2}\right]\left[\frac{\mathrm{e}^{\mathrm{y}}+\mathrm{e}^{-\mathrm{y}}}{2}\right]-\left[\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{2}\right]\left[\frac{\mathrm{e}^{\mathrm{y}}-\mathrm{e}^{-\mathrm{y}}}{2}\right]\)
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 8
∴ cosh(x – y) = cosh x cosh y – sinh x sinh y

Question 3.
If cosh x = \(\frac{3}{2}\), then find the values of
(i) cosh 2x
(ii) sinh 2x
Answer:
Given cosh x = \(\frac{3}{2}\)
i) cosh 2x = 2cosh2x – 1 = 2\(\left(\frac{3}{2}\right)^2\) – 1 = 2.\(\frac{9}{4}\) – 1 = \(\frac{9}{2}\) – 1 = \(\frac{7}{2}\)
∴ cosh 2x = \(\frac{7}{2}\)

ii) We know that cosh22x – sinh22y = 1
\(\left(\frac{7}{2}\right)^2\) – sinh22x = 1 = \(\frac{49}{4}\) = sinh22x = \(\frac{49}{4}\) – 1 = \(\frac{45}{4}\)
⇒ sinh 2x = \(\frac{3 \sqrt{5}}{2}\)

Question 4.
If sin hx = 5, then show that x = loge(5 + \(\sqrt{26}\))
Answer:
Given sin hx = 5 ⇒ x = sinh-1x ⇒ sinh-1(5)
We know that sinh-1x = loge(x + \(\sqrt{\mathrm{x}^2+1}\))
⇒ sinh-1(5) = loge(5 + \(\sqrt{5^2+1}\))
⇒ x = loge(5 + \(\sqrt{25+1}\)) = log (5 + \(\sqrt{26}\))
∴ x = loge(5 + \(\sqrt{26}\))

TS Inter First Year Maths 1A Hyperbolic Functions Important Questions

Question 5.
If tan hx = \(\frac{1}{4}\), then prove that x = \(\frac{1}{2}\)loge\(\left(\frac{5}{3}\right)\)
Answer:
Given tan hx = \(\frac{1}{4}\)
⇒ x = tan h-1\(\left(\frac{1}{4}\right)\)
We know that tan h-1x = \(\frac{1}{2}\)loge\(\left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)\) ⇒ tan h-1\(\left(\frac{1}{4}\right)\) = \(\frac{1}{2}\)loge\(\left(\frac{1+\frac{1}{4}}{1-\frac{1}{4}}\right)\)
⇒ x = \(\frac{1}{2}\)loge\(\left(\frac{4+1}{4-1}\right)\) = \(\frac{1}{2}\)loge\(\left(\frac{5}{3}\right)\)
∴ x = \(\frac{1}{2}\)loge\(\left(\frac{5}{3}\right)\)

Question 6.
Prove that (cosh x + sinh x)n = cosh(nx) + sinh (nx)
Answer:
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 9
∴ L.H.S = R.H.S
∴ (cosh x + sinh x)n = cosh(nx) + sinh (nx)

Question 7.
Prove that cosh2x – sinh2x = 1
Answer:
L.H.S = cosh2x – sinh2x
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 10

Question 8.
For any x ∈ R show that cosh 2x = 2cosh2x – 1.
Answer:
LHS = cosh 2x = \(\frac{\mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}}{2}\)
RHS = 2cosh2x – 1
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 11
∴ LHS = RHS
∴ cosh 2x = 2cosh2x – 1

Question 9.
Prove that sinh (3x) = 3sin hx + 4 sinh3x
Answer:
RHS = 3sin hx + 4 sinh3x
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 12
= sinh (3x) = LHS
∴ sinh (3x) = 3sin hx + 4 sinh3x

Question 10.
Prove that cos h(3x) = 4cos h3x – 3 cos hx
Answer:
RHS = 4cos h3x – 3 cos hx
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 13
= cos h(3x) = LHS
∴ cos h(3x) = 4cos h3x – 3 cos hx

TS Inter First Year Maths 1A Hyperbolic Functions Important Questions

Question 11.
Prove that tanh 3x = \(\frac{3 \tanh x+\tanh ^3 x}{1+3 \tanh ^2 x}\)
Answer:
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 14

Question 12.
Prove that tanh(x – y) = \(\frac{\tanh x-\tanh y}{1-\tanh \times \tanh y}\)
Answer:
LHS = tanh(x – y)
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 15
Dividing numerator and denominator by cos hx cos hy we get = \(\frac{\tanh x-\tanh y}{1-\tanh \times \tanh y}\) = RHS
∴ tanh(x – y) = \(\frac{\tanh x-\tanh y}{1-\tanh \times \tanh y}\)

Question 13.
Prove that coth(x – y) = \(\frac{{coth} x \cdot {coth} y-1}{{coth} y-{coth} x}\)
Answer:
LHS = coth(x – y)
TS Inter First Year Maths 1A Hyperbolic Functions Important Questions 16
Dividing by sinh x sinh y we get = \(\frac{{coth} x {coth} y-1}{{coth} y-{coth} x}\) = RHS
∴ coth(x – y) = \(\frac{{coth} x \cdot {coth} y-1}{{coth} y-{coth} x}\)

Leave a Comment