Learning these TS Inter 1st Year Maths 1B Formulas Chapter 8 Limits and Continuity will help students to solve mathematical problems quickly.
TS Inter 1st Year Maths 1B Limits and Continuity Formulas
→ If a variable x approaches a value a’ from the left i.e., through values just smaller than ’a’ than the limit of f defined is called the left limit of f(x) denoted by \(\lim _{x \rightarrow a^{-}}\)f(x)
\(\lim _{x \rightarrow a^{-}}\)f(x)= \(\lim _{h \rightarrow 0^{+}}\)f(a – h) = \(\lim _{x \rightarrow 0}\)f(a – x) (∵ x → a– ⇒ x < a)
→ If x approaches a’ from the right i.e., through the values just greater than ‘a’ then the limit of f defined is called the right limit of f(x) denoted by \(\lim _{x \rightarrow a^{+}}\)(x).
\(\lim _{x \rightarrow a^{+}}\) f(x)= \(\lim _{h \rightarrow 0^{+}}\) f(a + h)= \(\lim _{x \rightarrow 0}\)f(a + x) (∵ x → a+ ⇒ x > a)
→ Suppose f is defined in a deleted neighbourhood of ‘a’ and l e R then
\(\lim _{x \rightarrow a}\)f(x) = l ⇒ \(\lim _{x \rightarrow a^{+}}\)f(x) = \(\lim _{x \rightarrow a^{-}}\)f(x) = l
→ Standard limits:
- \(\lim _{x \rightarrow a} \frac{x^n-a^n}{x-a}\) = nan-1 and \(\lim _{x \rightarrow a}\left(\frac{x^m-a^m}{x^n-a^n}\right)=\frac{m}{n}\)am-n
- \(\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)\) = 1, \(\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)\) = 1
- \(\lim _{x \rightarrow 0}\left(\frac{a^x-1}{x}\right)\) = logea
- \(\lim _{x \rightarrow 0}\)(1 + x)\(\frac{1}{x}\) = e and \(\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x\) = e
- \(\lim _{x \rightarrow 0}\left(\frac{e^x-1}{x}\right)\) = 1
Note:
For finding \(\lim _{x \rightarrow a}\)f(x), first verify f(a). If this is in indeterminate form like \(\frac{0}{0}, \frac{\infty}{\infty}\) etc., then reduce the given limit into standard form or rationalise numerator or denominator or factorise according to the problem.