TS Inter 1st Year Maths 1A Properties of Triangles Important Questions Long Answer Type

Students must practice these Maths 1A Important Questions TS Inter 1st Year Maths 1A Properties of Triangles Important Questions Long Answer Type to help strengthen their preparations for exams.

TS Inter 1st Year Maths 1A Properties of Triangles Important Questions Long Answer Type

Question 1.
In ΔABC, show that b2 = c2 + a2 – 2ca cos B. [Mar. ’02]
Answer:
LHS = b2 = (2R sin B)2 = 4R2 sin2 B = 4R2[sin (A + C)]2 = 4R2 (sin A cos C + cos A sin C)2
= 4R2 (sin2 A cos2 C + cos2 A sin2 C + 2 sin A sin C cos A cos C)
= 4R2 [sin2 A (1 – sin2 C) + (1 – sin2 A) sin2C + 2 sin A sin C cos A cos C]
= 4R2 (sin2 A – sin2A sin2C + sin2C – sin2A sin2C + 2 sin A sin C cos A cos C)
= 4R2 (sin2A + sin2C – 2 sin2 A sin2 C + 2 sin A sin C cos A cos C)
= 4R2 [sin2A + sin2C + 2 sin A sin C (cos A cos C – sin A sin C)]
= 4R2 [sin2 A + sin2 C + 2 sin A sin C cos (A + C)]
= 4R2 sin2 A + 4R2 sin2 C – 8R2 sin A sin C cos B = a2 + c2 – 2ac cos B = RHS.

Question 2.
In ΔABC, show that [Mar ’94]
(i) sin\(\frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}\)
Answer:
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 1

(ii) cos\(\frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}}\)
Answer:
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 2

(iii) tan\(\frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}\)
Answer:
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 3

TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type

Question 3.
If a = (b – c)sec θ, prove that tan θ = \(\frac{2 \sqrt{b c}}{b-c}\)sin\(\frac{A}{2}\). [Mar; ’18(AP); Mar. ’16(TS); ’11]
Answer:
Given a = (b – c) sec θ
sec θ = \(\frac{a}{b-c}\)
tan2θ = sec2θ – 1 = \(\left(\frac{a}{b-c}\right)^2\) – 1 = \(\frac{a^2}{(b-c)^2}\) – 1 = \(\frac{a^2-(b-c)^2}{(b-c)^2}\)
= \(\frac{(a+b-c)(a-b+c)}{(b-c)^2}=\frac{(2 s-2 c)(2 s-2 b)}{(b-c)^2}=\frac{4 .(s-b)(s-c)}{(b-c)^2}\) = 4.\(\frac{(s-b)(s-c)}{(b-c)^2} \cdot \frac{b c}{b c}\)
tan2θ = 4.\(\frac{b c}{(b-c)^2}\)sin2\(\frac{A}{2}\)
tan θ = \(\frac{2 \sqrt{b c}}{b-c}\)sin\(\frac{A}{2}\)

Question 4.
Show that a cos2\(\frac{A}{2}\) + b cos2\(\frac{B}{2}\) + c cos2\(\frac{C}{2}\) = s + \(\frac{\Delta}{R}\) [May ’15(TS); Mar. ’03, ’00]
Answer:
L.H.S = a cos2\(\frac{A}{2}\) + b cos2\(\frac{B}{2}\) + c cos2\(\frac{C}{2}\)
= a\(\left[\frac{1+\cos A}{2}\right]\) + b\(\left[\frac{1+\cos B}{2}\right]\) + c\(\left[\frac{1+\cos C}{2}\right]\)
= \(\frac{\mathrm{a}}{2}+\frac{\mathrm{a}}{2}\) cos A + \(\frac{\mathrm{b}}{2}+\frac{\mathrm{b}}{2}\) cos B + \(\frac{\mathrm{c}}{2}+\frac{\mathrm{c}}{2}\) cos C
= \(\frac{\mathrm{a}}{2}+\frac{\mathrm{b}}{2}+\frac{\mathrm{c}}{2}+\frac{1}{2}\)(a cos A + b cos B + c cos C)
= \(\frac{a+b+c}{2}+\frac{1}{2}\)[2R sin A cos A + 2R sin B cos B + 2R sin C cos C]
= \(\frac{\mathrm{a}}{2}+\frac{\mathrm{b}}{2}+\frac{\mathrm{c}}{2}+\frac{1}{2}\)[sin 2A + sin 2B + sin 2C] = s + \(\frac{\mathrm{R}}{2}\)[sin 2A + sin 2B + sin 2C] …………(1)
Now sin 2A + sin2B + sin2C
= 2sin\(\left(\frac{2 \mathrm{~A}+2 \mathrm{~B}}{2}\right)\) cos \(\left(\frac{2 \mathrm{~A}-2
\mathrm{~B}}{2}\right)\) + sin2C
= 2 sin (A + B) cos (A – B) + sin 2C
= 2sin(180° – C)cos(A – B) + sin2C
= 2sin C cos (A – B) + 2sin C cos C
= 2sin C[cos(A – B) + cos C]
= 2sinC[cos(A – B) + cos[180° – (A + B)]
= 2sinC[cos(A – B) – cos(A + B)]
= 2sinC [2sin A sin B]
= 4 sin A sin B sin C
From (1) ⇒ s + \(\frac{\mathrm{R}}{2}\)[4sinA sinB sinC]
= s + 2R sin A sin B sin C
= s + \(\frac{2 \mathrm{R}^2}{\mathrm{R}}\) sin A sin B sin C = s + \(\frac{\Delta}{R}\) = R.H.S.

Question 5.
Prove that a3cos(B – C) + b3cos (C – A) + c2cos(A – B) = 3abc. [Mar. ’08; May ’00, ’98]
Answer:
L.H.S = a3 cos (B – C) + b3 cos (C – A) + c3 cos (A – B)
= Σa3 cos (B – C) = Ea2. a cos (B – C) = Σa2.2R sin A . cos (B – C)
= Σa2 .2R sin (180° – (B + C)) cos (B – C) = Σa2.2R sin(B + C) cos (B – C)
= Σa2 . R[sin (B + C + B – C) + sin (B + C – B + C)] = Σa2. R(sin 2B + sin 2C)
= Σa2 . R (2 sin B cos B + 2 sin C cos C) = Σa2 (2R sin B cos B + 2R sin C cos
= Σa2 (b cos B + c cos C) = Σ(a2b cos B + a2c cos C)
= ab cos B + a c cos C + bc cos C + b a cos A + ca cos A + cb cos B
= ab(a cos B + b cos A) + bc(b cos C + c cos B) + ac (a cos C + c cos A)
= ab(c) + bc(a) + ac(b) = 3abc = RHS.

Question 6.
Prove that cot\(\frac{A}{2}\) + cot\(\frac{B}{2}\) + cot\(\frac{C}{2}\) = \(\frac{s^2}{\Delta}\). [Mar. ’09]
Answer:
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 4

Question 7.
Prove that tan\(\frac{A}{2}\) + tan\(\frac{B}{2}\) + tan\(\frac{C}{2}\) = \(\frac{b c+c a+a b-s^2}{\Delta}\). [May ’98, ’97]
Answer:
L.H.S = tan\(\frac{A}{2}\) + tan\(\frac{B}{2}\) + tan\(\frac{C}{2}\)
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 5

Question 8.
If sin θ = \(\frac{a}{b+c}\), then show that cos θ = \(\frac{2 \sqrt{b c}}{b+c}\)cos\(\frac{A}{2}\). [Mar. ’16(AP), ’12; May ’14]
Answer:
Given sin θ = \(\frac{a}{b+c}\)
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 6

Question 9.
If a = (b + c)cos θ, then prove that sin θ = \(\frac{2 \sqrt{b c}}{b+c}\)cos\(\frac{A}{2}\). [Mar. ’19(AP); May ’11]
Answer:
Given cos θ = \(\frac{a}{b+c}\)
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 7
sin θ = \(\frac{2 \sqrt{b c}}{b+c}\)cos\(\frac{A}{2}\)

TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type

Question 10.
If a2 + b2 + c2 = 8R2, then prove that the triangle Is right angled. [Mar ’01]
Answer:
Given a2 + b2 + c2 = 8R2
(2R sin A)2 + (2R sin B)2 + (2R sin C)2 = 8R2
4R2 sin2 A + 4R2 sin2 B + 4R2 sin2C = 8R2
sin2A + sin2B + sin2C = 2
1 – cos2A + sin2B + sin2C = 2
1 – (cos2A – sin2B) + sin2C = 2
1 – cos (A + B). cos (A – B) sin2C = 2
1 – cos(180°- C)cos(A – B) + sin2C = 2
1 + cos C cos(A – B) + 1 – cos2C = 0
cos C [cos (A – B) – cos C] = 0
cosC[cos(A – B) – cos(180° – (A + B)] = 0
cos C [cos (A – B) + cos (A + B)] = 0
cos C (2 cos A cos B) = 0
2 cos A cos B cos C = 0
cos A. cos B cos C = 0
cos A = 0 or cos B = 0 or cos C = 0
A = 90° or B = 90° or C = 900
∴ The triangle is right angled.

Question 11.
Show that \(\frac{r_1}{b c}+\frac{r_2}{c a}+\frac{r_3}{a b}=\frac{1}{r}-\frac{1}{2 R}\). [May; 14, ’09, ’07, ’01, ’99, ’95; Mar. ’99, ’95, ’93]
Answer:
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 8
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 9

Question 12.
Show that (r1 + r2)sec2\(\frac{C}{2}\) = (r2 + r3)sec2\(\frac{A}{2}\) = (r3 + r1)sec2\(\frac{B}{2}\). [Mar. ’01]
Answer:
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 10

Question 13.
In ΔABC, if r1 = 8, r2 = 12, r3 = 24; Find a, b and c. [Mar. ’17(AP). ’02; May ’15(AP), ’13]
Answer:
We have \(\frac{1}{\mathrm{r}}=\frac{1}{\mathrm{r}_1}+\frac{1}{\mathrm{r}_2}+\frac{1}{\mathrm{r}_3} \Rightarrow \frac{1}{\mathrm{r}}=\frac{1}{8}+\frac{1}{12}+\frac{1}{24}=\frac{3+2+1}{24}=\frac{6}{24}=\frac{1}{4}\) = r = 4
Also \(\sqrt{\mathrm{rr}_1 \mathrm{r}_2 \mathrm{r}_3}=\sqrt{4(8)(12)(24)}\) = 96
Since s = \(\frac{\Delta}{r}=\frac{96}{4}\) = 24
r1 = \(\frac{\Delta}{s-a}\) ⇒ s – a = \(\frac{\Delta}{r_1}=\frac{96}{8}\) = 12 ⇒ a = s – 12 = 24 – 12 = 12
r2 = \(\frac{\Delta}{s-b}\) ⇒ s – b = \(\frac{\Delta}{r_2}=\frac{96}{12}\) = 8 ⇒ b = s – 8 = 24 – 8 = 16
r3 = \(\frac{\Delta}{s-c}\) ⇒ s – c = \(\frac{\Delta}{r_3}=\frac{96}{24}\) = 4 ⇒ b = s – 4 = 24 – 4 = 20
∴ The required values are a = 12, b = 16, c = 20

Question 14.
Show that \(\frac{a b-r_1 r_2}{r_3}=\frac{b c-r_2 r_3}{r_1}=\frac{c a-r_3 r_1}{r_2}\). [Mar. ’08]
Answer:
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 11

TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type

Question 15.
Prove that 4(r1r2 + r2r3 + r3r1) = (a + b + c)2. [Mar. ’97]
Answer:
L.H.S = 4(r1r2 + r2r3 + r3r1) = 4\(\left[\frac{\Delta}{s-a} \cdot \frac{\Delta}{s-b}+\frac{\Delta}{s-b} \cdot \frac{\Delta}{s-c}+\frac{\Delta}{s-c} \cdot \frac{\Delta}{s-a}\right]\)
= 4\(\left[\frac{\Delta^2}{(s-a)(s-b)}+\frac{\Delta^2}{(s-b)(s-c)}+\frac{\Delta^2}{(s-c)(s-a)}\right]\)
= 4\(\left[\frac{s(s-a)(s-b)(s-c)}{(s-a)(s-b)}+\frac{s(s-a)(s-b)(s-c)}{(s-b)(s-c)}+\frac{s(s-a)(s-b)(s-c)}{(s-c)(s-a)}\right]\)
= 4s[s – c + s – a + s – b] = 4s[3s – (a + b + c)] = 4s(3s – 2s) = 4s.s = 4s2 = (2s)2
= (a + b + c)2 = R.H.S

Question 16.
Show that cos2\(\frac{A}{2}\) + cos2\(\frac{B}{2}\) + cos2\(\frac{C}{2}\) = 2 + \(\frac{r}{2R}\). [Mar ’15(TS); Mar. ’05]
Answer:
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 12

Question 17.
If P1, P2, P3 are altitudes drawn from vertices A, B, C to the opposite sides of a triangle respectively, then show that
(i) \(\frac{1}{P_1}+\frac{1}{P_2}+\frac{1}{P_3}=\frac{1}{r}\) [Mar. ’18(TS); Mar. ’10]
(ii) P1P2P3 = \(\frac{(a b c)^2}{8 R^3}=\frac{8 \Delta^3}{a b c}\). [Mar. ’10. ’91]
Answer:
Since P1, P2, P3 are altitudes drawn from the vertices A, B, C to the opposite sides of a triangle respectively, then
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 13
Area of triangle ABC is Δ = \(\frac{1}{2}\) BC.AD = \(\frac{1}{2}\)aP1 ⇒ P1 = \(\frac{2 \Delta}{a}\)
AreaoftriangleABCls Δ = \(\frac{1}{2}\)AC.BE = \(\frac{1}{2}\)bP2 ⇒ P2 = \(\frac{2 \Delta}{b}\)
AreaoftriangleAßCls Δ = \(\frac{1}{2}\)AB.CF = \(\frac{1}{2}\)cP3 ⇒ P3 = \(\frac{2 \Delta}{c}\)
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 14

Question 18.
If a = 13, b = 14, c = 15, show that R = \(\frac{65 }{8}\), r = 4, r1 = \(\frac{21}{2}\), r2 = 12 and r3 = 14. [Mar. ’19, ’16(AP), ’15(AP), ’14, ’04; May ’12, ’11, ’10; B.P]
Answer:
Given a = 13, b = 14, c = 15
s = \(\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}=\frac{13+14+15}{2}=\frac{42}{2}\) = 21
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 15

Question 19.
If r1 = 2, r2 = 3, r3 = 6 and r = 1, then prove that a = 3 b = 4 and c = 5
Answer:
Given r = 1, r1 = 2, r2 = 3, r3 = 6
We have Δ = \(\) = 6
Δ = 6
r = 1 ⇒ \(\frac{\Delta}{\mathrm{s}}\) = 1 ⇒ \(\frac{6}{s}\) = 1 ⇒ s = 6
r1 = 2 ⇒ \(\frac{\Delta}{\mathrm{s-a}}\) = 2 ⇒ \(\frac{6}{6-a}\) = 2 ⇒ 6 – a = 3 ⇒ a = 3
r2 = 3 ⇒ \(\frac{\Delta}{s-b}\) = 3 ⇒ \(\frac{6}{6-b}\) = 3 ⇒ 6 – b = 2 ⇒ b = 4
r3 = 6 ⇒ \(\frac{\Delta}{s-c}\) = 6 ⇒ \(\frac{6}{6-c}\) = 6 ⇒ 6 – c = 1 ⇒ c = 5

TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type

Some More Maths 1A Properties of Triangles Important Questions

Question 1.
In a ΔABC, prove that \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\) where R is the circum radius.
Answer:
Case -I:
∠A is acute
‘s’ is the centre of the circumcircle and CD is its diameter then CS = SD = R and CD = 2R. Join BD then ∠DBC = 90° and DBC is a right angled triangle then ∠BAC = ∠BDC [ v angles in the same segment]
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 16
sin ∠BAC = sin ∠BDC ⇒ sin A = \(\frac{B C}{C D}=\frac{a}{2 R} \Rightarrow \frac{a}{\sin A}\) = 2R
Similarly \(\frac{b}{\sin B}\) = 2R, \(\frac{b}{\sin C}\) = 2R
∴ \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\) = 2R

Case – II:
∠A is right angled then a = BC = 2R = 2R.1 = 2R sin 90° = 2R sin A
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 17
\(\frac{a}{\sin A}\) = 2R
Similarly \(\frac{b}{\sin B}\) = 2R, \(\frac{c}{\sin C}\) = 2R
∴ \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\) = 2R

Case – III:
∠A is obtuse
∠DBC is right angled (∵ angle in the semi circle)
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 18
In cyclic quadrilateral BACD
∠BDC + ∠BAC = 180° ⇒ ∠BDC = 180° – ∠BAC
∠BDC = 180° – A
sin ∠BDC = sin(180° – A) ⇒ \(\frac{\mathrm{BC}}{\mathrm{CD}}\) = sin A
sin A = \(\frac{a}{2 R} \Rightarrow \frac{a}{\sin A}\) = 2R ⇒ Similarly \(\frac{b}{\sin B}\) = 2R, \(\frac{c}{\sin C}\) = 2R
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\) = 2R

Question 2.
Show that a2 cot A + b2 cot B + c2 cot C = \(\frac{abc}{R}\). [Mar. ’14]
Answer:
L.H.S. = Σ a2 cot A = Σ 4R2 sin2A = Σ4R2sin A cos A = 2R2Σsin 2A
= 2R2 (sin 2A + sin 2B + sin 2C) = 2R2 [sin 2A + 2 sin (B + C) cos (B – C]
= 2R2[2 sin A cos A + 2 sin A cos (B – C)] = 4R2 sin A [cos A + cos (B – C)]
= 4R2 sin A [cos (B – C) – cos (B + C)] = 4R2 sin A (2 sin B sin C)
= 2R2 (4 sin A sin B sin C) = 8R2\(\frac{a}{2 R} \frac{b}{2 R} \frac{c}{2 R}=\frac{a b c}{R}\) = R.H.S

Question 3.
In ΔABC, if \(\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}\) show that C = 60°
Answer:
\(\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c} \Rightarrow \frac{b+c+a+c}{(a+c)(b+c)}=\frac{3}{a+b+c}\)
⇒ 3(a + c)(b + c) = (a + b + 2c)(a + b + c)
⇒ 3(ab + ac + bc + c2) = a2 + b2 + 2ab + 3c(a + b) + 2c2
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 19
⇒ ab = a2 + b2 – c2 = ab = 2ab cos C (from cosine rule)
⇒ cos c = \(\frac{1}{2}\) ⇒ C = 60

Question 4.
In ΔABC, show that (a + b + c)(tan\(\frac{A}{2}\) + tan\(\frac{B}{2}\)) = 2c cot\(\frac{C}{2}\)
Answer:
LHS = (a + b + c)(tan\(\frac{A}{2}\) + tan\(\frac{B}{2}\)) = 2s\(\left[\frac{\Delta}{s(s-a)}+\frac{\Delta}{s(s-b)}\right]\) = 2Δ\(\left[\frac{1}{s-a}+\frac{1}{s-b}\right]\)
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 20

Question 5.
Show that b2 sin 2C + c2 sin 2B = 2bc sin A.
Answer:
L.H.S. = b2 (2 sin C cos C) + c2 (2sin B cos B)
= 2b2 \(\frac{c}{2 R}\) cos C + 2c2 \(\frac{b}{2 R}\) cos B = \(\frac{1}{R}\) (b2c cos C + c2b cos B)
= \(\frac{bc}{R}\) (b cos C + c cos B) = \(\frac{abc}{2}\) = 4Δ = 4 (\(\frac{1}{2}\)bc sin A) = 2bc sin A = R.H.S.

TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type

Question 6.
The angle of elevation of the top point P of the vertical tower PQ of height h from a point A is 45° and from a point B is 60°, where B is a point at a distance 30 meters from the point A measured along the line AB which makes an angle 30° with AQ. Find the height of the tower.
Answer:
Let the height of the tower PQ = h
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 21
∠PAQ = 45°, ∠BAQ = 30° and ∠PBC = 60°
Given AB = 30 mts.
∴ ∠BAP = ∠APB = 15°
Hence BP = AB = 30 and h = PC + CQ
sin 60° = \(\frac{\mathrm{PC}}{\mathrm{PB}}=\frac{\mathrm{PC}}{30}\) and sin30° = \(\frac{B D}{A B}=\frac{B D}{30}\)
∴ PC = 30 sin 60° = 30.\(\left(\frac{\sqrt{3}}{2}\right)\) = 15√3 and BD = 30.sin30° = 30.\(\left(\frac{1}{2}\right)\) = 15
∴ Height of the tower h = PC + CQ = 15(√3 + 1) mts.

Question 7.
Two trees A and B are on the same side of a river. From a point C in the river the distances of the trees A and B are 250 m and 300 m respectively. If the angle C is 45°, find the distance between the trees (use √2 = 1.414).
Answer:
Given AC = 300 m and BC = 250.m and in the ΔABC, using cosine rule
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 22
AB2 = AC2 + BC2 – 2AC.BC.cos 45° = (300)2 + (250)2 – 2 (300) (250)\(\frac{1}{\sqrt{2}}\)
= 46450
∴ AB = 215.5 m (approximately)

Question 8.
Prove that \(\frac{1+\cos (A-B) \cos C}{1+\cos (A-C) \cos B}=\frac{a^2+b^2}{a^2+c^2}\)
Answer:
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 23

Question 9.
If C = 60°, then show that \(\frac{b}{c^2-a^2}+\frac{a}{c^2-b^2}\) = 0.
Answer:
C = 60° ⇒ c2 = a2 + b2 – 2ab cos C = a2 + b2 – 2ab(cos 60°) = a2 + b2 – 2ab(1/2)
= a2 + b2 – ab …………..(1)
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 24

Question 10.
Prove that \(\frac{\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}}{\cot A+\cot B+\cot C}=\frac{(a+b+c)^2}{\left(a^2+b^2+c^2\right)}\).
Answer:
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 25

Question 11.
If \(\frac{a^2+b^2}{a^2-b^2}=\frac{\sin C}{\sin (A-B)}\), prove that ΔABC is either isosceles or right angled.
Answer:
Given \(\frac{a^2+b^2}{a^2-b^2}=\frac{\sin C}{\sin (A-B)} \Rightarrow \frac{a^2+b^2}{a^2-b^2}=\frac{\sin (A+B)}{\sin (A-B)}\)
By componendo and dividedo
⇒ \(\frac{a^2+b^2+a^2-b^2}{a^2+b^2-\left(a^2-b^2\right)}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)} \Rightarrow \frac{2 a^2}{2 b^2}=\frac{2 \sin A \cos B}{2 \cos A \sin B}\)
⇒ \(\frac{a^2}{b^2}=\frac{2 R \sin A \cos B}{2 R \cos A \sin B}=\frac{a \cos B}{b \cos A} \Rightarrow \frac{a}{b}=\frac{\cos B}{\cos A}\)
⇒ 2R sin A cos A = 2R sin B cos B ⇒ R sin 2A = R sin 2B
⇒ sin 2A – sin 2B = 0 ⇒ A = B
∴ ΔABC is isosceles. (or) 2A = 180° – 2B ⇒ A + B = 90°
Hence A ≠ B ⇒ ΔABC is a right angled triangle.
∴ ΔABC is either isosceles or right angled.

Question 12.
If cos2A + cos2B + cos2C = 1, then show that AABC is right angled.
Answer:
Given cos2A + cos2B + cos2C = 1 …. (1)
∴ cos2A + cos2B + cos2C = cos2A + cos2B + 1 – sin2C = 1 + cos2A + cos (B + C) cos (B – C)
= 1 + cos2A – cos A cos (B – C) = 1 + cos A [cos A – cos (B – C)] = 1 – cos A [cos (B + C) + cos (B – C)] = 1 – 2cos A cos B cos C (∵ A + B + C = π, cos (B + C) = – cos A)
∴ 1 – 2 cos A cos B cos C = 1 ⇒ 2 cos A cos B cos C = 0 ⇒ A = 90° or B = 90° or C = 90°
∴ ΔABC is right angled.

Question 13.
If cot\(\frac{A}{2}\), cot\(\frac{B}{2}\), cot\(\frac{C}{2}\) are in A.P., then prove that a, b, c are in A.P.
Answer:
cot\(\frac{A}{2}\), cot\(\frac{B}{2}\), cot\(\frac{C}{2}\) are in A.P.
⇒ \(\frac{s(s-a)}{\Delta}, \frac{s(s-b)}{\Delta}, \frac{s(s-c)}{\Delta}\) are in A.P.
⇒ (s – a), (s – b), (s – c) are in A.P ⇒ -a, -b, -c are in A.P ⇒ a, b, c are in A.P.

TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type

Question 14.
If sin2\(\frac{A}{2}\), sin2\(\frac{B}{2}\), sin2\(\frac{C}{2}\) are in H.P., then show that a, b, c are in H.P.
Answer:
Given sin2\(\frac{A}{2}\), sin2\(\frac{B}{2}\), sin2\(\frac{C}{2}\) are in H.P.
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 26
⇒ \(\frac{s-a}{a}, \frac{s-b}{b}, \frac{s-c}{c}\) are in A.P. ⇒ \(\frac{s}{a}, \frac{s}{b}, \frac{s}{c}\) are in A.P ⇒ \(\frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, \frac{1}{\mathrm{c}}\) are in A.P
∴ a, b, c are in H.P.

Question 15.
Two ships leave a port at the same time. One goes 24 km per hour in the direction N 45° E and other travel 32 kms per hour in the direction S 75° E. Find the distance between the ships at the end of 3 hours.
Answer:
The first ship goes 24 km/hr.
∴ After 3 hrs. first ship goes 72 kms.
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 27
The second ship goes 32 km/hr.
∴ After 3 hrs. second ship goes 96 kms.
Let AB = x be the distance between the ships.
From the geometry of the figure ∠AOB = 60°
Using cosine rule in ΔAOB we have
cos 60° = \(\frac{(72)^2+(96)^2-x^2}{2(72)+(96)} \Rightarrow \frac{1}{2}=\frac{5184+9216-x^2}{13824}\)
⇒ 13824 = 28800 – 2x2 ⇒ 2x2 = 14976 ⇒ x2 = 7488 ⇒ x = 86.4 (approximately)
At the end of 3 hours the difference between the ships is 86.4 kms.

Question 16.
The upper 374th portion of a vertical pole subtends an angle tan-13/5 at a point in the horizontal plane through its foot and at a distance of 40 m from the foot. Given that the vertical pole is at a height less than 100 m from the ground, find its height.
Answer:
From the figure AB is the vertical pole of height h’.
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 28
∠BCD = θ, suppose ∠DCA = α and ∠BCA = β.
tan α = \(\frac{h / 4}{40}=\frac{h}{160}\)
tan β = \(\frac{h}{40}\)
Also β = θ + α ⇒ θ = β – α

∴ tan θ = tan(β – α) = \(\frac{\tan \beta-\tan \alpha}{1+\tan \beta \tan \alpha}=\frac{\frac{h}{40}-\frac{h}{160}}{1+\frac{h}{40} \cdot \frac{h}{160}}=\frac{120 \mathrm{~h}}{6400} \cdot \frac{6400}{6400+\mathrm{h}^2}=\frac{120 \mathrm{~h}}{6400+\mathrm{h}^2}\)
⇒ \(\frac{3}{5}=\frac{120 h}{6400+h^2}\) ⇒ 3h2 + 19200 = 600h ⇒ 3h2 – 600h + 19200 = 0
⇒ h2 – 200h + 6400 = 0 ⇒ h2 – 160h – 40h + 6400 = 0
⇒ h(h – 160) – 40(h – 160) = 0 ⇒ (h – 40)(h – 160) = 0 ⇒ h = 40 or h = 160
Given that vertical pole is a height less than 100 m, from the ground we take h = 40 m as the height of the pole.

Question 17.
AB is a vertical pole with B at the ground level and A at the top. A man finds that the angle of elevation of the point A from a certain point C on the ground is 60°. He moves away from the pole along the line BC to a point D such that CD = 7 m. From D, the angle of elevation of the point A is 45°. Find the height of the pole.
Answer:
Let AB = ‘h’ be the height of the pole.
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 29
Given CD = 7
∠ACB = 60°, ∠ADB = 45° and line BC = x.
In the ΔABC, tan 60° = \(\frac{h}{x}\) ⇒ √3 = \(\frac{h}{x}\) ⇒ x = \(\frac{h}{\sqrt{3}}\)
In the ΔABC, tan 45° = \(\frac{h}{x+7}\) ⇒ x + 7 = h ⇒ \(\frac{h}{\sqrt{3}}\) + 7 = h ⇒ h\(\left(\frac{\sqrt{3}-1}{\sqrt{3}}\right)\) = 7
⇒ h = \(\frac{7 \sqrt{3}}{\sqrt{3}-1}=\frac{7 \sqrt{3}(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}=\frac{7 \sqrt{3}(\sqrt{3}+1)}{3-1}=\frac{21+7 \sqrt{3}}{2}\)

Question 18.
Let an object he placed at some height h cm and let P and Q be two points of observation which are at a distance of 10 cm apart on a line Inclined at angle 15° to the horizontal. If the angles of elevation of the object from P and Q are 300 and 600 respectively then find h.
Answer:
Let AB h cm be the height of the tower P and Q are points of observation.
From the geometry of the figure ∠BPA = 30° given ∠BPQ = 15°. Also ∠PQB = 135.
∴ ∠PBQ = 30°, PQ = 10 cm (given).
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 30
In the PQB, applying sine rule,
\(\frac{\mathrm{PQ}}{\sin \angle \mathrm{PBQ}}=\frac{\mathrm{BP}}{\sin \angle \mathrm{PQB}} \Rightarrow \frac{10}{\sin 30^{\circ}}=\frac{\mathrm{BP}}{\sin 135^{\circ}}\)
BP = \(\frac{\left(\sin 135^{\circ}\right)(10)}{\sin 30^{\circ}}=\frac{1}{\sqrt{2}}\) (10) × 2 = √2.(10)
Also in the ΔPAB,
sin 30° = \(\frac{A B}{P B}=\frac{h}{\sqrt{2} \cdot 10}\)
h = √2.(10)sin 30° = √2.(10)\(\frac{1}{2}\) = \(\frac{10}{\sqrt{2}}\) = 5√2 cm.

TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type

Question 19.
If A = 90°, show that 2(r + R) = b + c.
Answer:
L.H.S = 2(r + R) = 2r + 2R = 2(s – a)tan\(\frac{A}{2}\) + 2R . 1 = 2(s – a)tan 45° + 2R sin A (A = 90°)
= (2s – 2a) + a = 2s – a = a + b + c – a = b + c = R.H.S

Question 20.
Prove that \(\frac{r_1\left(r_2+r_3\right)}{\sqrt{r_1 r_2+r_2 r_3+r_3 r_1}}\) = a.
Answer:
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 31

Question 21.
If r : R: r1 = 2 : 5 : 12, then prove that the triangle is right angled at A.
Answer:
Given r : R : r1 = 2 : 5 : 12
∴ r1 – r = 12k – 2k = 10k = 2(5k) = 2R
⇒ 4R sin\(\frac{A}{2}\)(cos\(\frac{B}{2}\)cos\(\frac{C}{2}\) – sin\(\frac{B}{2}\)sin\(\frac{C}{2}\)) = 2R ⇒ 2sin\(\frac{A}{2}\) cos\(\left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)\) = 1
⇒ 2sin\(\frac{A}{2}\)sin\(\frac{A}{2}\) = 1 ⇒ sin2\(\frac{A}{2}=\frac{1}{2}\) ⇒ sin\(\frac{A}{2}=\frac{1}{\sqrt{2}}\) = sin 45°
⇒ \(\frac{A}{2}\) = 45° ⇒ A = 90°
Hence the triangle is right angled at A.

Question 22.
In ΔABC, if AD, BE, CF are the perpendiculars drawn from the vertices A, B, C to the opposite sides show that
(i) \(\frac{1}{\mathrm{AD}}+\frac{1}{\mathrm{BE}}+\frac{1}{\mathrm{CF}}=\frac{1}{\mathrm{r}}\)
(ii) \(\frac{(a b c)^2}{8 R^3}\)
Answer:
In ΔABC, if AD, BE, CF are the perpendiculars drawn from the vertices A, B, C to the opposite sides.
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 32
Area of ΔABC is A = \(\frac{1}{2}\)BC . AD = \(\frac{1}{2}\). a . AD
∴ AD = \(\frac{2 \Delta}{a}\)

Area of ΔABC is A = \(\frac{1}{2}\) AC . BE = \(\frac{1}{2}\) b . BE
∴ BE = \(\frac{2 \Delta}{b}\)

Area of ΔABC is A = \(\frac{1}{2}\) AB . CF = \(\frac{1}{2}\). c . CF
∴ CF = \(\frac{2 \Delta}{c}\)
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 33

Question 23.
Prove that \(\left(\frac{1}{r}-\frac{1}{r_1}\right)\left(\frac{1}{r}-\frac{1}{r_2}\right)\left(\frac{1}{r}-\frac{1}{r_3}\right)=\frac{a b c}{\Delta^3}=\frac{4 R}{r^2 s^2}\)
Answer:
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 34
Since Δ = \(\frac{a b c}{4 R}\)
we have abc = 4RΔ
∴ \(\frac{\mathrm{abc}}{\Delta^3}=\frac{4 \mathrm{R} \Delta}{\Delta^3}=\frac{4 \mathrm{R}}{\Delta^2}=\frac{4 \mathrm{R}}{\mathrm{r}^2 \mathrm{~s}^2}\) (∵ Δ = RS)
∴ \(\left(\frac{1}{r}-\frac{1}{r_1}\right)\left(\frac{1}{r}-\frac{1}{r_2}\right)\left(\frac{1}{r}-\frac{1}{r_3}\right)=\frac{a b c}{\Delta^3}=\frac{4 R}{r^2 s^2}\) = R.H.S

Question 24.
Prove that r(r1 + r2 + r3) = ab + bc + ca = s2.
Answer:
L.H.S = r(r1 + r2 + r3) = \(\frac{\Delta}{s}\left(\frac{\Delta}{s-a}+\frac{\Delta}{s-b}+\frac{\Delta}{s-c}\right)=\frac{\Delta^2}{s}\left(\frac{1}{s-a}+\frac{1}{s-b}+\frac{1}{s-c}\right)\)
= \(\frac{\Delta^2[(s-b)(s-c)+(s-a)(s-c)+(s-a)(s-b)]}{s(s-a)(s-b)(s-c)}\)
= \(\frac{\Delta^2}{\Delta^2}\)[(s2 + s2 + s2) – s(b + c) – s(a + c) – s(a + b) + bc + ca + ab]
= [3s2 – 2s(a + b + c) + bc + ca + ab] = 3s2 – 2s(2s) + ab + bc + ca
= ab + bc + ca – s2 = R.H.S

TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type

Question 25.
Show that cos A + cos B + cos C = 1 + \(\frac{r}{R}s\).
Answer:
L.H.S = cos A + cos B + cos C = cos A + 2 cos \(\left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)\) cos\(\left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)\)
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 35

Question 26.
Show that sin2\(\frac{A}{2}\) + sin2\(\frac{B}{2}\) + sin2\(\frac{C}{2}\) = 1 – \(\frac{r}{2R}\).
Answer:
L.H.S = sin2\(\frac{A}{2}\) + sin2\(\frac{B}{2}\) + sin2\(\frac{C}{2}\) = sin2\(\frac{A}{2}\) + sin2\(\frac{B}{2}\) + 1 – cos2\(\frac{C}{2}\)
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 36

Question 27.
Prove that r12 + r22 + r32 + r2 = 16R2 – (a2 + b2 + c2).
Answer:
(r1 + r2 + r3 – r)2 = [(r1 + r2 + r3) – r]2 = (r1 + r2 + r3)2 – 2(r1 + r2 + r3)r + r2
But using results r1 + r2 + r3 – r = 4R and r1r2 + r2r3 + r3r1 = s2
We have 16R2 = (r12 + r22 + r32 + r2) – 2r(r1 + r2 + r3) + 2s2 ………..(1)
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 37
∴ From (1)
r12 + r22 + r32 + r2 = 16R2 + 2(ab + bc + ca – s2) – 2s2 = 16R2 + 2(ab + bc + ca) – 4s2
= 16R2 = [4s – 2(ab + bc + ca)] = 16R2 – {(a + b + c)2 – 2(ab + bc + ca)}
= 16R2 – (a2 + b2 + c2)

TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type

Question 28.
In a ΔABC show that \(\frac{b^2-c^2}{a^2}=\frac{\sin (B-C)}{\sin (B+C)}\).
Answer:
TS Inter First Year Maths 1A Properties of Triangles Important Questions Long Answer Type 38

Leave a Comment